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SEASONAL PRODUCTION AND SALES PLANNING
WITH LIMITED SHARED TOOLING AT THE KEY OPERATION

by

Gerald G. Brown
Arthur M. Geoffrion*
Gordon H. Bradley

ABSTRACT

Lagrangean relaxation is applied to a class of very large mixed integyer
linear programming problems representing seasonal production and sales planning
in a situation where limited tooling is available at the key production operation.
A successful application to the injection molding industry is described.
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This paper addresses production and sales planning in a seasonal
industry with a single dominant production operation for which tooling can

be shared among parts and is limited in availability.

The specific context of our experience is the production of injection
molded plastic pipes and fittings destined for the building and chemical
industries. The dominant production operation is injection molding and the
tooling consists of mold bases used to adapt the injection molding machines
to the molds proper. Mold bases typically require 4-6 calendar months to
obtain at a cost which can approach the cost of the molding machine itself
80 their availability is limited and good utilization is important.

Dominant production operations with limited and possibly shared tooling
arise in many other contexts. Likely candidates include production facilities
based on casting, molding, stamping, extrusion, or pressing of finished or nearly
finished products. Dies and molds and associated adaptive tooling are usually
expensive and often designed for use with more than one end product. Machine
tooling with elaborate jigs and fixtures constitutes another large area of
potential application.

An informal statement of the problem treated is as follows, A facility
produces many different parts (products), each by a single operation calling
for a specific type of tool and any one of a number of machines compatible
with the toocl. Machines are aggraegated into machine groups and tools into
tool ty.pos. Production and sales are to be planned for each part over a
multiperiod horizon (typically monthly for a full year):

Detenmine
. how much of each part to produce in each time period
. how much of each part to sell in each time period

. how much of each part to carry forward as inventory from each
time period into the next




. & tool/machine assignment schedule specifying, for each time
period, the number of days of production of each tool type in
conjunction with each compatible machine group

40 a8 o satisfy all necessany constraints

« limited availability of tools in each time period

. limited availability of machines in each time period

« tool/machine compatibility restrictions

. for each part in each time period, sales cannot exceed forecast
demand

and 80 as Lo satisfy desired managerial policy constraints

. for each part in each time period, sales must exceed a certain
fraction of demand stipulated by management

+ for each part, the ending inventory at the conclusion of the
planning horizon must take on a stipulated value

- no planned backlogging of unfilled demand

in such a manner as to maximize total profits oven all parts
fon the dunation of the planning hordizon, caleulated according o

. incremental net profit contribution per unit produced

. less variable operating costs associated with production (by
tool type and machine group)

. less fixed costs associated with production (by part, for each
period with positive production)

. less inventory holding costs.

The problem as stated has elements in common with many familiar dynamic
planning and resource allocation problems. It is more detailed than most
seasonal planning problems in that discrete fixed costs are included and no
aggregation is necessary over parts, vet it stops short of encompassing
detailed scheduling because other aggregations are employed (tools + tool
types, machines + machine groups, time + time periods). Related production
planning and scheduling problems in the molding industry can be found in
(31 (61 (7). )

A proper mathematical formulation as a mixed integer linear program is

given in Sec. 1. The next section presents a solution approach based on a




particularly attractive lLagrangean relaxation and sketches our full scale
camputational implementation. Sec. 3 describes computational experience
with the injection molding application mentioned earlier. For this
application, solutions well within 2% of optimum are routinely produced
in about 3 minutes of IBM 370/168 time for mixed integer linear programs
on the order of 12,000 binary variables, 40,000 continuous variables,

and 26,000 constraints.
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l. THE MODEL

This section formally defines and discusses the model as a mixed
integer linear programming problem.

The formulation makes essential use of the concept of a standard day,
which is a part-specific measure of quantity. It is, for a given part, the
quantity that would be produced in one calendar day if a tool of the

required type were operating normally on any compatible machine.

Notation
Indices
i indexes parts
b | indexes tool types
k indexes machine groups

t indexes time periods, t = 1,...,T
146} index set of the parts requiring tool type j
K(3) index set of the machine groups compatible with tool type jJ
Given Data
a

jt days of availability of type j tools during period t
e days of availability of machine group k during periocd t
cjkt variable daily operating cost during period t of tool type j on
machine group k, for compatible combinations of j and k
it derand forecast for part i in period t, in standard days
it fixed cost associated with the production of part i in period t
it holding cost for one standard day of part i held for the duration
of period t
i initial inventory in period 1 of part i, in standard days
o
(must be > 0)
{7 ending inventory desired for part i, in standard days, at the
conclusion of the last period (must be > 0)
-1t maximum possidble production of part i in period t, in standard days
pi profit contribution associated with one standard day's worth of
part i, exclusive of the other costs included in the model

3 minimum fraction of @,, which must be satisfied as a matter of
it it
marketing policy

PO
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Decidion Variables

planned inventory of part i at the conclusion of peried t, in

standard days (1 € £ < T)

N planned sales of part i in peried t, in standard days

";kt planned production uays for tool type j on machine group k during
period t, for compatible combinations of j and k

it planned production of part i during period t, in standard days

Yit a binary variable indicating whether or not part i is produced

during period t

Mixed Integer Linear Program

Iic

MAXIMIZE Ip.Zx, -LLZIc, W
I,S,W,X,Y i tg ity Jkt ke
(1)
~LEfh (I, . +I, )/2-FL¢f. Y
it it'"i,t-1 .t it it it
subject to
(2) T w, < a , all jt
kt — it
3) hef:m] jz 11 3
v = X, ¢ a t
@ z ike = Pie » 81l kt
3
%) Tie = Ii t-1 t xj,t = Sie , all it
(7) 0= 1t e it , all it
(8 wm 20 , all 3kt
9 Tie20 b all it (1 S £t < T)
o)  ¥;, =0or1 , all it

It is understood that any summations or constraint enumerations involving
jJ and k together will run only over compatible combinations of j and k.

The objective function (1) is essentially the profit over the duration
of the blanning horizon. It is the profit contribution associated with
production over the planning horizon, less: machine operating costs, inven-

tory holding costs (applied to a simple 2-point estimate of the average

inventory level of each part in each period), and fixed costs.
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Constraints (2) and (4) respectively enforce availability limitations on
tools (by type) and machines (by group). Constraint (3), a work balance on
tools, relates the X's to the W's. Constraint (5) defines ending inventories
in the standard way. Constraint (6) requires the planned sales to be between
forecast demand and some specified fraction thereof. Constraint (7) keeps
production within possible limité and also forces Yit to be 1 when xit is
positive. Constraint (9) specifies that there be no planned backlogging.

Constraints (8) and (10) require no comment.

Further Discussion
Some additional comments are appropriate.
1. There can be more than one tool {resp. machine) available of a given
type (resp. group). Such census information, along with downtime

estimates, determines the ajt (resp. bkt) coefficients.

2. The index sets I (-) must be mutually exclusive and exhaustive, and

hence constitute a partition of the part indices. A unique tooi

type thus is specified for each part. Tooling is common to multiple

parts to the extent that these index sets are not singletons.

3. The fixed cost coefficients fit are perhaps best interpreted as
surrogates for detailed setup costs. The reason is that fit is
incurred when part i is produced in period t irrespective of whether

this requires a tool changeover (part i‘'s tool type may be common to

the part run previously), and irrespective of whether more than one mac

must simultaneously make part i in order to achisve the planned
production xig
would require a major revision of the model that would trans-

port it from the realm of planning to the realm of detailed

scheduling. Yet setup costs cannot be ignored entirely because

to specify setup costs at this higher level of detail

oo
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this tends to cause some of every part to be produced during every
period, a situation clearly unacceptable from the production
viewpoint. Our solution is to take the fit's as empiricaliy weighted

average setup costs.

Ending inventory level is the only significant terminal condition

of the model. A plausible choice is to set Ii equal to half the

T
desired lot size plus the desired seascnal inventory for part i at
the time in the seasonal cycle corresponding to the end of period T

(based on historical operating experience, insights obtained

previously with the help of the model, and managerial judgment).

The maximum possible production ™. is the smaller of two limits:

the physical limit imposed by full utilization of all available
tooling and machines, and the limit on the amount of production

that could be absorbed considering the total demand over the planning

hoxizon, specified ending inventory, and current inventory.

The profit coefficient Py is applied to Zt X0 instead of to

Zt Siee

sooner or later; applying p; as indicated avoids the need to value

The rationale for this is that everything made will be sold

initial inventory Ii° or ending inventory IiT’

The rationale for the policy parameters e is that demand levels
for different parts may be interdependent: if scarce production

resources are allocated only to the most profitable parts, thin

product lines and spotty product availability may displease

customers and result in lower market share for the profitable items.
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Size

For the practical application at hand, problem (1) - (10) has
approximately
40,000 continuous variables (I,S,W,X)
12,000 integer variables (Y)
26,000 constraints of type (2),(3),(4),(5),(7).
Problems of this magnitude are generally considered to be far beyond the

current state-of-the-art of general mixed integer linear programming.
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2. SOLUTION BY LAGRANGEAN RELAXATION

Laqrangeag relaxation (4] [S] [8] with respect to (3) is an
attractive way to generate upper bounds on the optimal value of (1) - (10).
The Lagrangean subproblem separates into as many independent simple trans-
portation problems in the W variables as there are time periods, and as many
independent dynamic single-item lot-size problems as there are parts. The
original monolith is thereby decomposed into manageable fragments. A good
choice for the Lagrangean variables can be obtained efficiently by solving
the conventional LP relaxation of (1) - (10), which is equivalent to a
single pure network problem. Moreover, Lagrangean relaxation with respect
to (3) does not satisfy the. Integrality Property defined in [5] and hence
is likely to be an improvement over the conventional LP relaxation.

These observations, explained in detail below, are the basis of a
solution procedure that has proven to be gquite effective.

One can ouild a branch-and-bound procedure around this Lagrangean
relaxation, but it has not proven necessary to & so for the industrial
application which stimulated this work. It has been sufficient to generate
a feasible solution to (1) - (10) based on the Lagrangean solution,

The objective value of this solution has unfailingly been sufficiently
close to the upper bound from Lagrangean relaxation that no further refine-
ment has been needed.

A formal description of the solution procedure is now presented.

Step 1 Solve the usual linear programming relaxation of (1) - (10) via
the aquivalent capacitated network formulation. Denote the

associated dual variables for (3) by X'j .
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Step 2 - Form the Lagrangean relaxation of (1) - (10) with respect to (3)
Step <
using X . Separate it into independent subproblems in W for each t

and, for each i, in the remaining variables.

Solve each of the Lagrangean subproblems by specialized algorithms.
Denote the combined optimal solution to the full Lagrangean

relaxation by (Io,so,wo,xo.Yo) and its optimal value by UB.

Step 3 Solve (1) - (10) with ¥ set “"elastically” to Y°; that is,

(10) is relaxed 0 i °
axed to :-Yit'i 1 with fit set to 0 if Yit =1 and

augmented by a large positive constant if th = 0. Denote the
optimal solution to this problem by (I1',S',W',X',Y'). Let Y" be Y'
with all fractional components rounded up to unity. Form the revised
solution (I°',S8°',W',X',Y"), and denote its objective value under (1)
as LB. This solution is feasible in (1) - (10) and is within

UB-LB of being optimal. Stop.

Step 1 yields an equivalent capacitated network problem because, when
(10) is relaxed to 0O S-Yit < 1 for all i t, the relation Yit - xit/mit must
hold at optimality for all i t. Upon elimination of ¥, (7) becomes redundant,

the relaxed version of (10) becomes

(10)° 0<X, <o, rallit
and (1) can be rewritten as
T-1
(2)* MAXIMIZE LI w -LIZe¢ W - h' I -H
gparratval b U Xe ke ke ke T 00 e Tie
where
11 . A i for all i t
(11) ie 2P - 3. or |
1 - _
(12) e 83 g+ by ) for all i and t=l,...,T-1
1
(13) d '2';“: Mgy I, +hp Iy

P
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It is easy to see that the resulting linear programming problem can be
formulated as a minimum cost capacitated network flow problem.

See Figure 1 for an example with 3 parts, 2 tool types, .
3 machine groups, 3 time periods, I(1) = {1}, I(2) = {2,3}, K(1) = {1,2}, and
K(2) = {2,3}). The notational conventions followed in Figure 1 are: the term of
(1) ' corresponding to each arc is written over the arc (omission means that the
unit flow cost is 0), the upper capacity limit of each arc is written under
it (omission implies infinite capacity), and the constraint on the net outflow
of each node is written under it (omission implies = 0, or strict conservation).
The curved arcs between the part nodes are not annotated for lack of rvom;

the typical arc is:

period t period t+l

Several variants of the network formulation pictured in Figure 1 are possible.
The Lagrangean relaxation of Step 2 is composed of the following
independent subproblems: for each ¢,

Ry mnmazE ;o:

W, 3 eK(9)

subject to (2),(4), and (8) for fixed t

L)W

Cixe = 24e) yxe

and, for each i,

™1
(R)) MINIMIZE g (T -p) X, + I h I +Lf ¥
' LI JWie R Tie T S Tie Tie T Tie Tie
X%,

- subject to (5),(6),(7),(9),(10) for fixed i

T TR WYY NN (W FOPNRaay g P e L L s T
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where j(i) is the index of the tool type required by part i. Using an
obvious notation, the optimal value of the full Lagrangean relaxation of
Step 2 is

(14) wd-zvrH - vr) -x.
t i i

Pigures 2 and 3 portray (Rt) and (Ri) for the example illustrated in
figure 1. Notational conventions are the same as before except for the arcs
leaving node Qi in Figure 3: these are dashed to indicate that they are
"fixed charge" arcs, with the amount of fixed charge incurred by their use
given as the first of the two annotations written over the arcs.

Problem (Rt) can be converted easily to a simple transportation problem,
However, it can be shown using LP duality theory that the W-part of the
optimal solution found at Step 1 is necessarily optimal also in these sub-
problems. No work at all need be performed in connection with these
subproblems!

Problem (Ri) has as many fixed charge arcs as there are time periods.
Its special structure invites the development of a specialized solution
procedure (e.g., (1] treats a closely related class of dynamic lot-size
problems which is a special case of (Ri)) .

Step 3 yields a problem virtually identical in form to that of Step l.

It can be solved efficiently in the same manner.
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3. APPLICATION AND COMPUTATIONAL RESULTS

The model and computational procedure described above have been under
development and application for more than two years at both plants of R & G
Sloane Manufacturing Company of Sun Valley, California. The following identi-

fications and specializations are appropriate.

General Model Molding Application (main plant)

parts (i) the top 1000 injection molded
fittings (about 92% of all sales
volume)

tool types (j) - ' about 90 types of interchangeable 4
mold bases (total mold base census
about 130)

machine groups (k) about 15 groups of interchangeable

injection molding machines (total
machine census about 60)

tool/machine compatibility about 480 jk combinations permis- 3
sible
time periods (t) typically the next 12 months

cjkt' fit' S taken as independent of t
The problem faced by R & G Sloane is a strongly seasonal one; with the
bulk of the company's business accounted for by residential plumbing products,

demand peaks along with residential construction in the summer months.

Since the peak season demand rate exceeds the available capacity of mold

bases and machines, constraints (2) and (4) tend to be binding at that time

of year (typically, about 20% of the mold base constraints and 80% of the

machine constraints are binding in at least three months). Typical relative
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magnitudes of the major cost categories associated with an optimal solution

are:

fixed costs 14.3

inventory carrying 16.9

variable operating _68.8

100.0

s Unfilled demand in most optimal solutions occurs for 2 or 3% of all parts.

Computational Implementation
N A full scale computational implementation has been carried out for this

| application. The computer programs are in three modules:

1. data extraction and data base definition
‘ 2. problem preprocessing and diagnosis

3 3. optimization and report writing.

Data extraction primarily involves conversion of current production,
marketing, and inventory control operating data to the form required by the

model. The data base is organized and generated in sections:

* problem parameters and conditions
» machine group descriptions
! ¢ mold bases and their machine compatibility

¢ part descriptions and demand forecasts.

Preprocessing identifies structural and mathematical inconsistencies

in the problem posed, and assists in preliminary diagnosis of critical

shortages in equipment availability.
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The optﬁnization module solves the capacitated pure networks presented

in Steps 1 and 3 with a GNET variant (XNET/Depth) (2]; an advanced starting

solution is used which assumes high equipment utilization. The fixed charge
problems (Ri) are solved in Step 2 with a highly specialized fixed order
enumeration algorithm employing GNET/Depth: key elements of this

o procedure identify and exploit dominant problem features such as mandated
maximum production, and permit parametric relaxation of the full enumeration

for prohibitively long solution sequences.

@! ‘The solution reports are presented at several levels of aggregation so as
| to facilitate managerial interpretation. They display all detailed solution
features, estimated opportuniiy costs for critical mold bases and machines,

and an overall analysis of profitability, turnover, and customer service.

Computational Results 3
Approximately 30 runs have been made during the last year. Computational

.; performance has exhibited a high degree of run-to-run stability in terms of
the quality of solutions produced and the amount of computer resources expended. i

i Table 1 summarizes several aspects of performance for a recent typical

run of the optimization module. With report writing time included, the total

CPU time for this zuh was 165.5 seconds. The main storage requirement was
about one megabyte. Notice that the bound produced by the Lagrangean relaxation
g _ is significantly better than the ordinary linear programming relaxation bound. i
Notice also that the time in Step 2 is smaller than what one might expect; the

12-period fixed charge problems were solved in an average of only .027 seconds

each (for comparison, the typical time quoted in [1] for a proper subclass of




e e aei

—— > _
19
Normalized
IBM 370/168 Objective
Pivots CPU Seconds value
Step 1
(LP Relaxation) 37,933 55.0 103.2
Step 2
{(Lagrangean Relaxation) 376,241 25.7 101.6
Step 3
(Generate Feasible Solution) 36,954 54.2 100.0

TABLE 1

Typical Computational Performance
(953 parts, 92 tool types, 16 machine groups)

of these problems of the same size was 0.25 seconds on an IBM 370/158).
For this run, 142 (resp. 10) of the 11,436 binary Y variables changed
from value O (resp. 1) in Step 2 to value 1 (resp. 0) in Step 3. This shows
that the solution to the Lagrangean relaxation of Step 2 required but minor
adjustment with respect to the fixed change arcs in order to yield the good
feasible solution of Step 3.

The pre-optimization modules required 10 seconds for the run reported
in Table 1.

More generally, our experience has been that optimization CPU time for
similar sized problems seldom varies more than + 10%. Computing time is
very nearly proportional to the total number of parts. The final optimality

tolerance (which was 1.6% in the Table 1 run) tends to become tighter

the more tightly capacitated tool and machine availability is; tolerances in

oy ——
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the vicinity of 2/10 of 1% are commonly observed in the most tightly

constrained situations.

In no case has the tolerance ever exceeded 2%.
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4. CONCLUSION

This paper has demonstrated the practical applicability of a procedure
based on Lagrangean relaxation to a significant class of integrated production
and sales planning models. The particular way in which this procedure is
designed thoroughly exploits the recent major advances made for minimum cost
network flow problems. Provably good solutions are routinely being obtained
in modest computing time to mixed integer linear programs of a size far beyond
the capabilities of existing general-purpose mathematical programming systems.

The system is used regularly at R & G Sloane Manufacturing company
for production scheduling in the sense that day-to-day scheduling is still
performed manually but with the benefit of the system's guidance and predic~
tions of bottlenecks in the future. The integrated nature of the model has
made the system valuable as a focal point for coordinating planning activities
among the key functional areas of the firm: inventory qontrol, finance, market-
ing, and production operations. Two specific illustrations are the evaluation

of major capital expenditure and interplant equipment transfer opportunities.
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